3. Waves

3.1 General properties of waves

Paper 3 and 4

Answer Key

Paper 3

Q1.

Question	Answer	Marks
(a)(i)	reflection	B1
(a)(ii)	diffraction	B1
(a)(iii)	refraction	B1
(a)(iv)	change in speed	B1
(b)	(vibrations are) at right angles / perpendicular	B1
	(to the) direction of propagation of the wave	B1
(c)	tick in 1st and 3rd boxes	B1
	✓ radio waves	
		B1
	✓ light waves	
(d)	$(\lambda =) 6(.0) (m)$	А3
	$(\lambda =) 1500 \div 250$	(C2)
	velocity (of wave) OR wave speed = frequency \times wavelength OR (λ =) $v + f$	(C1)

Q2.

Question	Answer	Marks
(a)	longitudinal	B1
(b)(i)	(at least) 3 semi-circular wavefronts after gap showing diffraction	B1
	wavefronts with same wavelength as before gap	B1
(b)(ii)	one wavelength drawn on diagram	B1
(c)	8.3 (Hz)	A3
	38 ÷ 4.6	(C2)
	$v = f \times \lambda$ OR (frequency =) speed \div wavelength OR ($f = v + \lambda$	(C1)

Q3.

Question	Answer	Mark
(a)	(v =) 20 (cm/s)	А3
	$(v =) 4(.0) \times 5(.0)$	(C2)
	$(v =) f \times \lambda$	(C1)
χ(b)	any three from: refraction direction of waves / wavefronts changes (due to) change in speed wavelength changes as depth of water changes	В3

Q4.

Question	Answer	Marks
(a)(i)	(amplitude =) 15 (cm)	B1
(a)(ii)	(frequency =) 0.5 (Hz)	A2
	(frequency =) number of waves sent out / emitted in one second OR 1 wave in 2.0 (s) OR frequency = 1 ÷ 2(0)	(C1)
- J (b)	diffraction	B1
(c)(i)	refraction	B1
(c)(ii)	(change of) wavelength OR (wave) speed OR velocity	B1

Q5.

Question	Answer	Marks
(a)	idea of measure more than one wavelength	B1
	idea of dividing measurement by number of wavelengths (measured)	B1
(b)	(speed =) 24 (cm/s)	А3
	(speed =) 6(.0) × 4(.0)	(C2)
	$(v =) f \times \lambda$	(C1)
(c)	(name of effect) refraction	B1
	change of speed	B1

Q6.

Question	Answer	Marks
(a)(i)	refraction	B1
(a)(ii)	wavelength	M1
	(of) waves (in shallow water) is shorter / smaller ORA	A1
	OR	
	speed	(M1)
	(of) waves / wavefronts (in shallow water) is slower ORA	(A1)
(b)	2.5 (Hz)	А3
	25/10	C2
	(frequency =) number of (complete) waves sent out OR passing a point in one second / unit time OR 1 Hz is 1 wave in one second OR no. of waves ÷ time taken	C1
(c)(i)	any electromagnetic wave OR an S-wave	B1
(c)(ii)	(particle vibrations are) perpendicular / at right angles	B1
	to the direction of propagation / wave travel / energy transfer	B1

Q7.

Question	Answer	Marks
(a)(i)	s	B1
(a)(ii)	Q	B1
(b)	transverse	B1
(c)	(number of) cycles / vibrations / waves per unit time / second	B1

Q8.

Question	Answer	Marks
(a)(i)	8.0 (cm)	B1
(a)(ii)	1.5 (cm)	B1

Q9.

(b)	horizontal line drawn between 2 peaks OR any 2 adjacent similar points on the wave	B1
(d)	longitudinal (vibrations) are parallel to the direction of propagation	B1
	transverse (vibrations) are perpendicular/at right angles to the direction of propagation	B1

Q10.

Question	Answer	Marks
(a)(i)	R	B1
(a)(ii)	P	B1
`(a)(iii)	idea of: number of (complete) waves {sent out or produced or passing a point} {in one second or unit time}	B1

Q11.

Question	Answer	Marks
(a)	movement (of coils / spring) parallel	B1
	to the direction wave / it / disturbance travels	B1
(b)	5.2 (cm)	B1
(c)	number of waves (passing a point OR sent out)	B1
	(in) one second / unit time.	B1
(d)	speed = distance ÷ time	C1
	25 ÷ 0.2(0)	C1
	125 (cm/s)	A1

Paper 4

Q12.

Question	Answer	Marks
(a)(i)	diffraction	B1
(a)(ii)	450 Hz	A2
	$v = f\lambda$ OR $(f =) v/\lambda$ OR 340/0.75	C1
(a)(iii)	large diffraction when gap size / doorway is similar to wavelength	B1
	high frequency / 3500 Hz has (much) shorter wavelength AND there is less diffraction (with shorter wavelengths)	B1
(b)	ray drawn from the violin to point X AND from point X to the teacher	B1
	mirror drawn at point X and labelled AND angle of incidence = angle of reflection	B1
	correct arrow on incident ray OR correct arrow on reflected ray	B1

Q13.

Question	Answer	Marks
(a)	any two from: (longitudinal) vibration / oscillation in wave parallel to propagation direction / direction of travel transverse wave vibrates / oscillates perpendicular to propagation direction / direction of travel (longitudinal) consists of compressions and rarefactions transverse wave consists of crests / peaks and troughs (longitudinal) needs a medium (to travel)	B2
(b)(i)	P-wave AND it is longitudinal	B1
(b)(ii)	1.8 × 10 ⁴ m OR 18km	A2
	1.5λ OR $1.5 \times 1.2 \times 10^4$ OR 1.8×10^N	C1
(b)(iii)	$v = f \lambda \text{ OR } v = \lambda / t \text{ OR } (t =) \lambda / v \text{ OR } f = 4600 / 1.2 \times 10^4$ OR $(t/5 =) 1.2 \times 10^4 / 4600 \text{ OR } (t =) 6(.0) \times 10^4 / 4600$	M1
	13s	A2
	t = 1/f OR (time for one wave =) 2.6 (s)	C1

Q14.

Question	Answer	Marks
(a)	P-waves: longitudinal	B1
	S-waves: transverse	B1
(b)	1600 m OR 1.6 km	А3
	$v = f\lambda $ OR $(\lambda =) v/f$	C1
	$(\lambda =) [7.2 \times 1000] / 4.5 \text{ OR } (\lambda =) 1.6 \times 10^{\text{N}} \text{ OR } (\lambda =) 7.2 / 4.5$	C1

Q15.

(b)	6200-6500 Hz	А3
	$(\lambda$ =) value from 0.051 to 0.053 (m) seen anywhere	C1
	$(f =) v/\lambda$ in any form or 330/0.052 or 330/5.2 or 63	C1
(c)	compressions / rarefactions closer or more compressions / rarefactions (in same distance)	B1
	less diffraction / spreading out	B1
	(because of) smaller wavelength or ratio wavelength / gap width smaller	B1

Q16.

Question	Answer	Marks
(a)	speed changes or (wave) speed is smaller in right-hand part of tank or waves slow down or bottom (on the page) section of wave hits the boundary first	C1
	(wave) speed is smaller in right-hand part of tank or waves slow down or bottom (on the page) section of wave hits the boundary first	C1
	bottom (on the page) / one part / one side / one section of wave slows down first (and different sections are delayed by different amounts)	A1
(b)(i)	$(f =) v + \lambda$ (in any form) or $0.39 \div 0.052$ or $0.39 \div 0.026$ or 15 (Hz) or $0.39 \div 5.2$ or $0.39 \div 2.6$ or 0.15 (Hz) or 0.075 (Hz)	C1
	0.39 ÷ 0.052 or 15 (Hz) or 0.39 ÷ 5.2 or 0.15 (Hz) or 0.075 (Hz)	C1
	7.5 Hz	A1
(b)(ii)	angle of incidence / i = 45(°) or angle of refraction / r = 33(°)	C1
	$(v_2 =) v_1 \times \sin(r) + \sin(i)$ (in any form) or $\lambda_2 = \lambda_1 \times \sin(r) + \sin(i)$ (in any form) or $0.39 \times \sin(33^\circ) + \sin(45^\circ)$ or $0.39 \times \sin(57^\circ) + \sin(45^\circ)$	C1
	0.30 m/s	A1

Q17.

Question	Answer	Marks
(a)(i)	1 amplitude marked correctly	B1
	2 wavelength marked correctly	B1
(a)(ii)	trough labelled T	B1
(b)	f = 15 / 60 (= 0.25)	B1
	$v = f \lambda$ in any form OR $(v =) f \lambda$ words, symbols or numbers	B1
	(v =) 0.08 × 0.25 (= 0.02 m/s) OR 0.25 × 8 (= 2.0 cm/s)	B1
	Alternative route 1 : $v = d \div t$ words, symbols or numbers	(B1)
	distance moved in one minute = 15 × 8 OR 120 OR 15 × 0.08 OR 1.2	(B1)
	(v =) 120/60 (= 0.02 m/s) OR 120 ÷ 60 OR 15 × 0.08 ÷ 60 OR 1.2 ÷ 60	(B1)
	Alternative route 2 : time for 1 oscillation = 4 s	(B1)
	distance moved in 4 s = 8 cm	(B1)
	so speed = 8 ÷ 4 = 2 cm/s	(B1)
(c)	oscillation at right angles to the direction of propagation / travel / energy transfer (of the wave)	B1
	oscillation parallel to / in the direction of propagation / travel / energy transfer (of the wave) OR has compressions and rarefactions OR needs / must have a medium	B1

Q18.

Question	Answer	Marks
(a)	$(\lambda =) v/f$ OR 340/20 000 OR 340/20	C1
	0.017 m AND 17 m	A1
(b)	(longitudinal wave) <u>vibration</u> direction parallel to propagation/energy travel direction	B1
	transverse wave vibration direction perpendicular to propagation / energy travel direction	B1
	consists of rarefactions AND compressions	B1

Question	Answer	Marks
(c)	diffraction mentioned	B1
	wavelength of sound from drum/low frequency sound greater (than wavelength of high frequency sound)	B1
	more diffraction of sound from drum OR less diffraction of high frequency sound	B1

Q19.

Question	Answer	Marks
(a)	three wavefronts parallel to each other AND same angles of reflection and incidence both by eye	B1
	two wavelengths same as original wavelength by eye	B1
	three reflected waves meet incident waves at barrier	B1
(b)	$v = f\lambda$ in any form OR $(f =) v/\lambda$	C1
	OR (f =) 1.2/0.36	C1
	(f =) 3.3 Hz	A1

Q20.

Question	Answer	Marks
(a)(i)	At least 3 circular wavefronts centred on gap extending to at least half of semicircle	1
	Same spacing as incident wavefronts	1
(a)(ii)	At least 3 straight, parallel, wavefronts, approximately same length as width of gap	1
	Ends of straight lines curving towards but not reaching barrier	1